Maximum Likelihood Estimation of Search Costs
نویسندگان
چکیده
منابع مشابه
Maximum Likelihood Estimation of Parameters in Generalized Functional Linear Model
Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...
متن کاملMaximum Likelihood Estimation of Weight Matrices for Targeted Homology Search
Genome annotation relies to a large extent on the recognition of homologs to already known genes. The starting point for such protocols is a collection of known sequences from one or more species, from which a model is constructed – either automatically or manually – that encodes the defining features of a single gene or a gene family. The quality of these models eventually determines the succe...
متن کاملMaximum likelihood estimation of Gaussian mixture models using stochastic search
Gaussian mixture models (GMM), commonly used in pattern recognition and machine learning, provide a flexible probabilistic model for the data. The conventional expectation–maximization (EM) algorithm for the maximum likelihood estimation of the parameters of GMMs is very sensitive to initialization and easily gets trapped in local maxima. Stochastic search algorithms have been popular alternati...
متن کاملStochastic search strategy for estimation of maximum likelihood phylogenetic trees.
The maximum likelihood (ML) method of phylogenetic tree construction is not as widely used as other tree construction methods (e.g., parsimony, neighbor-joining) because of the prohibitive amount of time required to find the ML tree when the number of sequences under consideration is large. To overcome this difficulty, we propose a stochastic search strategy for estimation of the ML tree that i...
متن کاملMaximum Likelihood Estimation ∗ Clayton
This module introduces the maximum likelihood estimator. We show how the MLE implements the likelihood principle. Methods for computing th MLE are covered. Properties of the MLE are discussed including asymptotic e ciency and invariance under reparameterization. The maximum likelihood estimator (MLE) is an alternative to the minimum variance unbiased estimator (MVUE). For many estimation proble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2006
ISSN: 1556-5068
DOI: 10.2139/ssrn.885260